EE141

Asynchronous-Synchronous
Interface

Synchronous system

fCLK/ \ [\ [\

Asynchronous
system

Synchronization

EE141

Need of Interfacing

» Asynchronous design is good, but should
communicate with synchronous-latency
penalty

» Synchronous system gets asynchronous
input from keyboard

> Even if no asynchronous modules are
used, synchronous modules operating at
different clock rates or out of phase can
have the same problem.

EE141

EE141

Single clock . . Independent clocks
(Mesochronous) Rational clock frequencies (plesiochronous
if frequencies
closely match)

Async-Sync FIFO

Asynchronous
Domain

Synchronous
Domain 2

Synchronous
Domain 1

o
w
[
w
Q
IS
>
N
Q
IS
>
[7)
<
(©)
w
=
w
Q
IS
>
[7)
¥
Q
IS
>
)

\ Mixed-Clock FIFO's

EE141

Synchronization problem

> WHEN?--Occurs when a synchronous
circuit must synchronize an asynchronous
input.

> HOW?--if the clock edge arrives too close
in time to data arriving from an
asynchronous circuit, the circuit may enter
a meta-stable state in which its output is at
neither a logic 0 or logic 1 level, but rather,
lies somewhere in between.

e = |

Voltage

Asynchronous Synchronized
Input | DQr— Input

(IK —) Q}—

Time

Fig. 1. {a) Simple, dangerous synchronizer. (b) Oscillescope view of metastable behavior,

.- |

EE141

» Assume that Q is initially low and that D has
recently gone high.

» If D goes low again at about the same time that
CLK rises, the output Q may start to rise and
then get stuck between the logic levels as it
observes D falling. Should Q rise or fall?

» Actually, either answer would be okay, but the
FF becomes indecisive.

» At some point, Q may continue to a logic 1 level,
or it may drop to the logic O level.

» When this happens, however, is theoretically
unbounded.

EE141

> Subsequent FF looks at the synchronized
input, it sees an indeterminate value.

> This value may be interpreted by different
subsequent logic stages as either a logic O or
a logic 1. This can lead the system into an
illegal or incorrect state, causing the system
to fail.

> Such a failure is traditionally called a
synchronization failure.

EE141

EE141

Background Work

> The problem was largely ignored until
1966.

> Even after that the synchronization
problem was not widely known or
understood as several asynchronous
arbiters designed in the early 1970s
suffered from metastability problems

EE141

Awakening

> Finally, in 1973 experimental evidence of
the synchronization problem presented by
Chaney and Molnar appears to have
awakened the community to the problem

> After this paper, a number of papers were
published that provided experimental
evidence of metastability due to
asynchronous inputs, and mathematical
models were developed to explain the
experimental results

EE141

EE141

Hard fact

> Meta-stability in a BISTABLE is
unavoidable

Probability of Synchronization
Failure

> An acceptance of this fact and a careful
analysis of this probability is crucial in
designing a reliable system

EE141

Representative plot

based on measured r
data for the !
response time of a
FF as a function of
the arrival time of :
data, td, with 0
respect to the clock W

EE141

IMPORTANT OBSERVATIONS

> If data only changes before the setup time,
tsu, and after the hold time, th, of a flip-
flop, the response time, tr, is roughly
constant and equal to the propagation
delay through the flip-flop, tpd.

> If, data arrives between the setup and hold
times, the delay increases.

> In fact, if the data arrives at just the
absolutely wrong time, the response time
is unbounded.

EE141

EE141

Synchronizer: Output
Trajectories

VOu!

0 100 200 300
time [ps]

Single-pole model for a flip-flop

(1) = Vit ((0) -~ Vypode?'T

[VIH_ VIL] ,
Pmit B szing rL

Nsync(o) -

T¢ Tsignal Tt;b
_ -Ti7
Pii 1T W= Vype 1
Nsync(T) = T = g T e
) swing signal” ¢

EE141

Example

T;=10nsec=T

Tsignal = 90 nsec

t, = 1 nsec

t =310 psec =tau

ViR-ViL =1V (Vpp=5V)

N(T) = 3.9 102 errors/sec
MTF (T) = 2.6 108 sec = 8.3 years

MTF (0) = 2.5 sec N()=

400,000

Cascaded Synchronizers Reduce
MTF

In o2} O, Out
—> Sync Sync Sync ——>

Y
Y

EE141

MODELING

> The probability that the data arrives at a
time td which falls between tsu and th is --

[el

P':f-a' = [fsu:fh]:l = T

> If we assume that the latch is given some
bounded amount of time, tb, to decide,
then the probability of a synchronization
failure is related to the probability that the
response time, tr, exceeds tb

> if td falls in this range, the probability that
tr > tb can be expressed as follows:

l
Plt, =ty | t3 € [tou, th|) = ——— .
> 18] ta€ s) b+ (1= k)elto=tpal 7

10

EE141

setup / hold

How to live with metastability ?

> Metastability cannot be avoided, it must be tolerated.

> Having a decent MTBF (= years) may resultin a
tangible impact in latency

> Purely asynchronous systems can be designed
failure-free

> Synchronous and mixed synchronous-asynchronous
systems need mechanisms with impact in latency

> But latency can be hidden in many cases ...

11

EE141

Different approaches

> Pausible Clocks (Yun & Donohue 1996)

> Predict metastability-free transmission windows for domains with

related clocks (Chakraborty & Greenstreet 2003)

> Use the waiting time in FIFOs to resolve metastability
(Chelcea & Nowick 2001)

» And others ...

> The term “Globally Asynchronous, Locally Synchronous” is typically
used for these systems (Chapiro 1984)

EE141

Synchronizers and Arbiters

» Arbiter: Circuit to decide which of 2 events
occurred first

> Synchronizer: Arbiter with clock @ as one of the
inputs

» Problem: Circuit HAS to make a decision in
limited time - which decision is not important

» Caveat: It is impossible to ensure correct
operation

> But, we can decrease the error probability at the
expense of delay

EE141

12

EE141

Problem: Introductng an asynchronous signal mto a digifal {synchronized) system, using Flip-Flops.
The outcome 15 Infermuttent or random fathures during operation.

How to avoid metastability in ICs: Add an additional Flip Flop in the design fo Synchronize the incoming
asynchronous stgnal with the new clock domain, which will reduce the Mean-Time-Between-Failure [MTBE].

/ ™\ Synchronizer
A Zynchronized
b
E FEICAONOE |y .
: —
Asynchronous ‘ 'M‘ $ynchrenous
\ sjstam Cluck System

Resolve Time: The amount of tume the Flip Flop's oufput must return to a valid leve] before 1t's used.

This 15 1/{clock frequency} - path delay. The output st be valid by the next clock, minus any chup o routing
delay.

Path Delay = Teko - Tronte + Tsn;

.... Teko = Clock to Output time of the flip flop,

.... Troute = Any frace delay between the the Q of the flip flop and the next device reading that data,

... Tsu=any Set-Up tume required by the next device reading the data.

Skew {Clock or data}: The change n time of one signal compared to another, cansed by timing delays or
propagation delays. ~The timing differences developed by different devices performing the same function.
Ambiguity: The uncertamty in the amouat of time 1f takes for a valid logic signal

to change from one state to another.

Metastability Window: The specific length of time, during which both the data

and clock should not oceur. If both signals do occur, the cutput may go metastable.

13

EE141

Why metastability occurs

Iniputs

o » Time between two
Tp Time

e white line is
— metastability window

Data

D et Vakid

Causing metastable
B el viston state

» Async. sig. comes any
time violating setup or
o vaeim hold time constraints.

Possible behavior of latch

Five possible conditions exist:

One: No timing violation occurred, and the output moves to the appropriate state (high or low).

Two: A timing violation does occur, and the output oscillates between the valid states (for a long time), or vatil
ifs needed.

Third: A timing violation does oecur, and the output moves fo the wrong state,

Forth: A timing violation does occur, and the propagation delay is increased. Causing the next device in the chain
fo see the wrong value.

Fifth: A timing violation does occur, and no meta-stable behavior cceurs. The output moves to the correct state
with 10 oscillation of inerease in propagation delay. However this condition is problematic because the gamble 15
taken each time the device is clock. This condition may persist for thousands of clock cycles, but may fail on the
next clock cycle. For a fail-safe design stay m condition one, any other condition will result in failure.

14

EE141

Avoid metastability--a simpie

Synchronizer

CLK
e
T

Iy

int {>c 0
CLK ol2<}

» Data sampled on rising edge of the clock

« even if input not valid, Latch will eventually re solve the signal
value,

but ... this might take infinite time!

Synchronizer: Output
Traj '

2.0

VOu!

1.0

JU LTI

0.0

o

100 200 300
time [ps]

Single-pole model for a flip-flop

(1) = Vit ((0) -~ Vypode?'T

15

EE141

Modelling

Mean Time to Failure

Ve ~ VIL]
_ Pinir Vswing 1
Nsync(o) T
o signal o
_ -Tir
Pl (V= Vipe 1
nync(ﬂ - T - V T T
& swing signal” ¢

EE141

Multi-Stage Synchronizer

Adding a second Flip Flop to the destzn will reduce the chance of the output going Metastable.
The output from the first flip flop may go valud, before the second flip flop 15 clocked. Adding vet another flip

flop will reduce the probabilty that sts oufput will be uastable even mose. A TAAS4374 from Tl providesa '
fype, Dual stage synchronizer.

D‘“to D o—0wu#t ik D g Oyt
[',Ll:kq u"]i

Classical “synchronous” solution

N RN

Mean Time Between Failures Example

fe: frequency of the clock # FFs MTBE
fo: frequency of the data

t: resolve time available 1FF 15 min
W: metastability window

r: resolve time constant 2 FF 9 days

__ it 3FF 23 years
MTBF = o o w y

17

EE141

Synchronizer design

Flip Flop design is important?

4 Dynamic FFs not suitable for synchronizers
since they have no regeneration

ozt T
T T

CMOS Dynamic FF TS5FF [(Swenson)

#Special _SYNC_ FFs should be used for the
primary synchronizer if available

18

EE141

Synchronization Pitfall

]

Never synchronize the same signal in multiple
places! Inconsistency will result!

I _<: 21
_ I
i aR g

T — doa

We O
i o

e
i
|

Conclusions

+ Synchronizers are important. Synchronization
failure is deadly and difficult to debug

4 Synchronization requires careful design. Most
CAD and logic tools CANNOT catch bad
synchronizer designs.

4 Design of synchronizer depends on
performance level needed. Basic
synchronizer of back-to-back FFs is the core
design all others are based on.

19

EE141

Words to the wise

Be wary of synchronizer schemes designed by
others

¢ Synopsys Designware DWO04 _sync multi-bit
synchronizer DOES NOT WORK as a synchronizer

¢ Synthesizers might use dynamic FFs as
synchronizers _ they don_t know the difference.

¢ Auto-placement tools must be told to place
synchronizer FF pairs close together

BE PARAMOID

Influence of Noise

Uniform distribution
around VM
p(v)

logiarithmic
rgduction

Still Uniform

Initial Distribution

Low amplitude noise does not influence synchronization behavior

20

EE141

The probability of escape from metastability with t ime

is given by:
=I

P(t)=1-e*

This function does not change with the addition of noise
because of the uniform distribution of initial cond itions.

For each noise contribution that moves a trajectory away
from metastability, there will, on average, be anot her
compensating noise contribution that moves a trajec tory
towards metastability. The result, in a statistical
measurement, is that the event histogram will be
unchanged

EE141

Typical Synchronizers

2 phase clocking circuit @

%
%

]

il
Using delay line

EE141

21

EE141

Arbiters

(b) Implementation

(c) Timing diagram

Mutual exclusion element

regl O 1 0 ackl

reqz 1 0 ack2

EE141

Mutual exclusion element

Metastability

resolver 0
reqlt O 1 ack2

req2 0 1 ackl

An asynchronous data latch with MS
resolver can be built similarly

23

